<table>
<thead>
<tr>
<th>Title</th>
<th>Imaging the dynamics of magma propagation using radiated seismic intensity.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Taisne, B.; Brenguier, F.; Shapiro, N. M.; Ferrazzini, V.</td>
</tr>
<tr>
<td>Date</td>
<td>2011</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/8378</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2011 American Geophysical Union.</td>
</tr>
</tbody>
</table>

This paper was published in Geophysical Research Letters and is made available as an electronic reprint (preprint) with permission of American Geophysical Union. The paper can be found at DOI: [http://dx.doi.org/10.1029/2010GL046068]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Imaging the dynamics of magma propagation using radiated seismic intensity

B. Taisne,1 F. Brenguier,1,2 N. M. Shapiro,1 and V. Ferrazzini2,3

Received 3 November 2010; revised 14 January 2011; accepted 19 January 2011; published 22 February 2011.

[1] At shallow depth beneath the Earth’s surface, magma propagates through strongly heterogeneous volcanic material. Inversion of buoyancy and/or solidification have strong impacts on the dynamics of propagation without any change of magma supply. In this paper, we study the spatial and time evolution of magma intrusions using induced seismicity. We propose a new method based on ratio analysis of estimates of radiated seismic intensities recorded at different stations during seismic swarms. By applying this method to the January 2010 Piton de la Fournaise volcano eruption, we image complex dike propagation dynamics which strongly differ from a model of constant velocity dike propagation. We provide a new method to image in real time the dynamics of dike propagation and to infer the position of eruptive fissures. Citation: Taisne, B., F. Brenguier, N. M. Shapiro, and V. Ferrazzini (2011), Imaging the dynamics of magma propagation using radiated seismic intensity, Geophys. Res. Lett., 38, L04304, doi:10.1029/2010GL046068.

1. Introduction

[2] Eruption precursory activity associated with volcanic unrest is currently recorded at many volcanological observatories around the world and mainly consists of seismicity and ground deformation monitoring. During magma propagation to the near-surface, the vicinity of the associated dike or sill is subjected to a large stress field perturbation [Rubin and Gillard, 1998], that will concentrate most of the induced seismicity (seismic swarms). Monitoring these seismic swarms is thus a potentially powerful technique to track magma movements but is not used to its full potential for several reasons. During swarms, seismic events are difficult to separate, so that one may not use the efficient location methods that have been devised for single earthquakes. Only those events with well identified P and S phases can be treated with current methods and a large part of the seismic signal is left unused. Consequently, the interpretation of the data in term of the dynamics of magma migration is difficult. Previously, few examples of migration of seismicity associated with magma movement have been imaged by geophysical means [Aoki et al., 1999; Hayashi and Morita, 2003; Battaglia et al., 2005a]. However, precise analysis of seismicity (location and magnitude) requires post-processing and is therefore difficult to perform in real time.

[3] Here, we propose a simple and robust method to track magma movements using the ratio of the seismic intensities at different seismic stations radiated by the surroundings of the dike’s tip. We apply this method to the January 2010 eruption of Piton de la Fournaise volcano (La Réunion island). As a result, we observe a complex dike propagation history which strongly differs from a model of constant velocity dike propagation. We thus provide a simple method to image dike propagation in near-real time and to predict the position of eruptive fissures.

2. Method

[4] Traditionally, seismic events are located using P or S wave travel time delays measured at different receivers. This approach finds its limits when it becomes difficult to measure accurate arrival times such as for example, during seismic swarms or in cases of low signal to noise ratio micro–seismicity. Here, we propose a method to automatically estimate the position at depth of a seismic source by using the differences in seismic amplitudes recorded at different sensors. This approach relies on the decay of seismic wave amplitude along the source–receiver travel path. In order to avoid the requirement of detecting P or S wave arrivals, we use an estimate of the average recorded seismic intensity over a time window much longer than the seismic wave travel time delays at different sensors (see section 3 for details). Following Battaglia and Aki [2003], we use a simple attenuation (equation (1)).

\[I_i = I_0 e^{-Bn_i/r_i^m}, \]

with,

\[B = \frac{\pi f}{Q\beta}, \]

where \(I_i \) is the seismic intensity (a measure of the amplitude of a velocity seismogram, see section 3) recorded at receiver \(i \), \(r_i \) is the distance from the source, \(I_0 \) is the source radiated seismic intensity, \(f \) is frequency, \(\beta \) is shear wave velocity and \(Q \) is the quality factor for attenuation. The index \(n = 1 \) for body waves and \(n = 0.5 \) for surface waves. For simplification we consider an isotropic medium with constant \(B \).

[5] To avoid the estimate of the seismic intensity at the source (\(I_0 \)), we choose to analyse the ratios of seismic intensities between sensors (equation (3), where \(t \) corresponds to time) rather than the true seismic intensities at different sensors.

\[\frac{I_{ij}'}{I_{ji}'} = \left(\frac{r_i'}{r_j'}\right)^n \exp\left[-B\left(r_i' - r_j'\right)\right]. \]

For the present purpose, and due to the fact that we use different pairs of stations, we will consider any temporal changes
as a result of the migration of the seismic source and therefore to the migration of the magma.

3. Example of Data Processing

[6] As an application of the proposed method, we focus on Piton de la Fournaise (PdF) volcano located on La Réunion island in the Indian ocean (Figure 1). It is a basaltic shield volcano which erupted more than 30 times between 2000 and 2010. Since 2009–2010, 15 broad-band seismic stations have been installed on the volcano as part of the Understanding Volcano project (UnderVolc), in addition to the existing seismic array.

[7] We analyse data from the 2010 January eruption. The selected eruption presents a seismic swarm that can be divided into two phases (Figures 2a and 2b). During the first phase, which lasted for about an hour, a high level of seismicity was recorded followed by a relatively quiet phase that directly preceded the onset of the eruption (indicated by continuous seismic tremor).

[8] As a first stage of data processing we correct the signal for the instrument responses to retrieve accurate values of ground motion velocity. Seismic signal amplitudes have also been corrected for site effects using the coda amplification factor method \cite{Aki and Ferrazzini, 2000}.

[9] Seismicity induced by magma migration has a relatively high frequency content compared to the background noise. For this study we only consider a frequency range between 5Hz and 15Hz (relevant for volcano-tectonic events).

[10] We calculate the envelope of the signal using the norm of the difference between the filtered data (from 5Hz to 15Hz) and their Hilbert transform.

[11] To eliminate spikes or glitches we decimate the data by keeping the median of 1000 consecutive points, corresponding to 10 seconds. This leads to the seismic intensity estimate, \(I \), that we will use from now.

[12] The last step of the analysis is a median filter applied on \(I \) using a sliding window of given duration \(\Delta t \). The

Figure 1. Location of Piton de la Fournaise volcano on La Réunion island (inset) and seismic station distribution (inverted triangles). Those used in this study are referred by their names on the map. The position of the January 2010 eruptive fissure is shown as a dashed circle.

Figure 2. Example of data processing. (a and b) The raw ground velocity at stations UV05 and FLR respectively. (c and d) The seismic intensities, see section 3 for further details. (e) The ratio between \(I_{5\text{min}}^{\text{UV05}} \) and \(I_{5\text{min}}^{\text{FLR}} \). Vertical dashed lines represent the beginning of the seismic swarm (07:54 AM) and the onset of the eruption (10:25 AM).
the results of this data processing for the seismic emissions from the dike (Figure 3a). It is important to note that since this method relies on the inversion result (Figure 3c, details section 5).

The misfit is calculated at each time step using the data and equation (3). The results are shown in Figure 4. Corresponding calculated seismic ratio is shown, for one pair of stations, Figure 3c, with error calculated using locations corresponding to grid points in the direct neighborhood of the best location.

5. Inverse Problem

In order to image magma propagation at depth, we seek the position within a grid that best explains the intensity ratios from all possible pairs of stations. We process a simple inverse problem in which we compute all the theoretical intensity ratios on each point of the grid defined as follows: EASTING from 362 km to 370 km every 100 km, Northing from 7647 km to 7653 km every 100 m and depth from −0.5 km to 2.5 km above sea level every 50 m. The range of depth is defined from the deepest events located at the beginning of the seismic swarm, to the top of the edifice. Since the size of the active propagating front (about 100 m) is smaller than the source to receiver distance, we may consider a single source of isotropic radiated seismicity (composed of numerous events presenting random orientation). The inversion is done assuming a homogeneous and isotropic medium. Parameters used for the attenuation law are $n = 1$, $Q = 170$, $f = 10$ Hz and $\beta = 1$ km s$^{-1}$. This set of parameters, corresponds to seismic intensities dominated by body waves, allowing inversion of the depth.

The 3-dimensional misfit used is the following:

$$\chi^2 = \sum_{i} \left(\sum_{j} \left(\frac{I_{Sta}^{calculated}}{I_{Sta}^{measured}} - \frac{I_{Sta}^{calculated}}{I_{Sta}^{measured}} \right)^2 \right).$$

The misfit is calculated at each time step using the data and equation (3). The results are shown in Figure 4. Corresponding calculated seismic ratio is shown, for one pair of stations, Figure 3c, with error calculated using locations corresponding to grid points in the direct neighborhood of the best location.
negligible and all possible intensity ratios will be close to one. This also implies, for future inversion of swarm migration using intensity ratios, that the error in the position will be a function of the position itself: the greater the source-receiver distance, the greater the error will be. Another source of error will be the presence of two distinct sources of sustained seismic emission of similar energy like volcanic tremor [Battaglia et al., 2005b, Appendix A]. Nevertheless, when following magma migration the potential other sources of seismicity are rock falls or distant earthquakes. They will only affect the analysis if they are 2 times longer than the time-windows used for the median filter and of significant energy. Even then the perturbation will affect only a few minutes over the few hours that the migration lasted.

[25] In terms of the dynamics of magma propagation, the results clearly show that the upward migration started between 9:00 AM and 9:30 AM. Combining intensity ratios (Figure 3) and the results of the inversion (Figure 4) we can infer that the migration initiates at 9:00 AM with clear migration toward the surface at 9:25 AM, which corresponds to about one hour after the beginning of the seismic swarm (see the auxiliary material for Animation S1). At smaller scale the upward propagation does not occur at constant velocity but presents phases of rapid propagation and phases of arrest or with a strong decrease of velocity, as stipulated by Taisne and Jaupart [2009] and Taisne and Tait [2011] for complex magma propagation.

[26] This simple analysis can be easily applied to real time monitoring of magma migration and gives an opportunity to extract information on the dynamics of magma propagation.

[27] In future studies a more complete inverse problem should be done (with inversion of n and Q as well as location) including scattering effect that could be dominant in active volcanos [Wegler, 2003; Friedrich and Wegler, 2005; Parsiegla and Wegler, 2008].

[28] Acknowledgments. The data used for the analysis was collected by the Institut de Physique du Globe de Paris, Observatoire Volcanologique du Piton de la Fournaise (IPGP/OVPF) and the Laboratoire de Géophysique Interne et Tectonophysique (LGIT) within the framework of ANR-08-CERC-005 (COHERSIS), ANR-08-RISK-011 (UNDERVOLC) and by a FP7 European Research Council advanced grant 227507 (WHISPER). This is IPGP contribution 3121. E. Calais thanks Paul Segall and an anonymous reviewer.

References

6. Discussions and Conclusions

[24] The proposed analysis will find a limitation when the source of the seismicity is far from all the stations. In that case, the relative difference in the source-receiver paths are

F. Brenguier and V. Ferrazzini, Observatoire Volcanologique du Piton de la Fournaise, UMR 7154, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, CNRS, 14RN3 - Km 27, 97418 La Plaine des Cafres, La Réunion.

N. M. Shapiro and B. Taisne, Department of Seismology, UMR 7154 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, CNRS, 1 rue Jussieu, F-75238 Paris, CEDEX 5, France. (taisne@ipgp.fr)