Indonesia

The Aceh Geohazards Project combines geology, geomorphology, history and archaeology to better understand the past occurrence of tsunami in Aceh, and the extent to which such events might have impa

Getting to the Crux of Coring (Part 3 of 3)

Obviously, no one on deck gets to see this momentous event since it’s happening 4.5 km below sea level, but the pipe’s collision with the seafloor can be followed on a monitor that tracks the tension of the polymer cable. As the coring unit makes its three-to-four hour descent, the tension on the cable is about 6.5 tons — it drops to zero when the pipe hits the seafloor, then spikes to about 11 tons as it’s pulled from the sticky mud. On the way back up, which takes another three-to-four hours, the tension is greater than it was on the way down, thanks to the weight of the mud now trapped inside the pipe.

Getting to the Crux of Coring (Part 1 of 3)

Coring is difficult work, requiring days of planning, specialised equipment, and no small amount of physical prowess. Unlike bathymetry, which is primarily experienced by staring at computer monitors for hours upon end, coring happens on deck — day or night, rain or shine. This combination of engineering know-how and man doing battle with the elements makes coring fascinating to observe.

Magnetic Anomalies in the Wharton Basin (Part 2 of 2)

One of the root causes of all this activity could be the age of the lithosphere, that ever-spreading, always-moving seafloor crust. “South of eastern Java,” Dr Dyment said, pointing to a brightly coloured map on his computer, “the lithosphere is about 120 million years old. South of western Java, it’s younger, maybe 80 million years old. But alongside Sumatra, the crust is much younger, as young as 45 million years old. And then, of course, on the other side of that, things start aging again.

Magnetic Anomalies in the Wharton Basin (Part 1 of 2)

Between roughly 84 and 118 million years ago, during the Cretaceous Period, north was north and south was south, just like it is today. But around 83 million years ago, the planet’s polarity reversed, which means if you had been alive at that time and had held a compass in the palm of your hand, the north needle would have pointed south. Since then, the Earth’s polarity has reversed more than 40 times, sometimes for stretches lasting millions of years, other times for comparatively short slivers of geological time. Long or short, the records of these changes on the seafloor are known as magnetic anomalies.

Diving into Geology Lessons while Floating in the Indian Ocean

For students participating in the MIRAGE, every day is an opportunity to learn something new. For example, when entering data into the log book, it is an opportunity to go beyond the numbers and learn—in real time—what those numbers mean. Similarly, when students are cleaning up the bathymetry (the underwater study of the terrain of the ocean floor), attending the daily 4pm meeting, or dining with a member of the Institut Paul Emile Victor (IPEV) who they have not yet spoken with, they are free to soak up as much new information as they like.

How our Muslim Scientists Observed Ramadan while out at Sea

When I spoke with Captain Victor Broi the other morning, he mentioned that one of the biggest challenges facing his crew on this voyage was keeping everyone happy when it comes to food. In particular, he cited the need to prepare a special pre-dawn breakfast for those passengers observing Ramadan, the month-long period (it ended yesterday on Wednesday) when Muslims fast during daylight hours.

Pages

Subscribe to RSS - Indonesia