Extending Resolution of Fault Slip with Geodetic Networks Through Optimal Network Design

TitleExtending Resolution of Fault Slip with Geodetic Networks Through Optimal Network Design
Publication TypeJournal Article
Year of Publication2017
AuthorsSathiakumar S, Barbot S, Agram P
JournalJournal of Geophysical Research: Solid Earth
Date Published10/2017

Geodetic networks consisting of high precision and high rate GNSS stations continuously monitor seismically active regions of the world. These networks measure surface displacements and the amount of geodetic strain accumulated in the region, and give insight into the seismic potential. SuGar (Sumatra GPS Array) in Sumatra, GEONET (GNSS Earth Observation Network System) in Japan and PBO (Plate Boundary Observatory) in California are some examples of established networks around the world that are constantly expanding with the addition of new stations to improve the quality of measurements. However, installing new stations to existing networks is tedious and expensive. Therefore, it is important to choose suitable locations for new stations to increase the precision obtained in measuring the geophysical parameters of interest. Here, we describe a methodology to design optimal geodetic networks that augment the existing system and use it to investigate seismo-tectonics at convergent and transform boundaries considering land-based and seafloor geodesy. The proposed network design optimization would be pivotal to better understand seismic and tsunami hazards around the world. Land-based and seafloor networks can monitor fault slip around subduction zones with significant resolution, but transform faults are more challenging to monitor due to their near-vertical geometry.