A petrological and conceptual model of Mayon volcano (Philippines) as an example of an open-vent volcano

TitleA petrological and conceptual model of Mayon volcano (Philippines) as an example of an open-vent volcano
Publication TypeJournal Article
Year of Publication2021
AuthorsRuth D, Costa F
JournalBulletin of Volcanology
Date Published09/2021
KeywordsBasaltic andesite, Diffusion chronometry, Magma mixing, Magma mush, Mineral chemistry, Open-vent, Persistently active volcano
Abstract

Mayon is a basaltic andesitic, open-vent volcano characterized by persistent passive degassing from the summit at 2463 m above sea level. Mid-size (< 0.1 km3) and mildly explosive eruptions and occasional phreatic eruptions have occurred approximately every 10 years for over a hundred years. Mayon’s plumbing system structure, processes, and time scales driving its eruptions are still not well-known, despite being the most active volcano in the Philippines. We investigated the petrology and geochemistry of its crystal-rich lavas (~ 50 vol% phenocrysts) from nine historical eruptions between 1928 and 2009 and propose a conceptual model of the processes and magmatic architecture that led to the eruptions. The whole-rock geochemistry and mineral assemblage (plagioclase + orthopyroxene + clinopyroxene + Fe-Ti oxide ± olivine) of the lavas have remained remarkably homogenous (54 wt% SiO2, ~ 4 wt% MgO) from 1928 to 2009. However, electron microscope images and microprobe analyses of the phenocrysts and the existence of three types of glomerocrysts testify to a range of magmatic processes, including long-term magma residence, magma mixing, crystallization, volatile fluxing, and degassing. Multiple mineral-melt geothermobarometers suggest a relatively thermally buffered system at 1050 ± 25 °C, with several magma residence zones, ranging from close to the surface, through reservoirs at ~ 4–5 km, and as deep as ~ 20 km. Diffusion chronometry on > 200 orthopyroxene crystals reveal magma mixing timescales that range from a few days to about 65 years, but the majority are shorter than the decadal inter-eruptive repose period. This implies that magma intrusion at Mayon has been nearly continuous over the studied time period, with limited crystal recycling from one eruption to the next. The variety of plagioclase textures and zoning patterns reflect fluxing of volatiles from depth to shallower melts through which they eventually reach the atmosphere through an open conduit. The crystal-rich nature of the erupted magmas may have developed during each inter-eruptive period. We propose that Mayon has behaved over almost 100 years as a steady state system, with limited variations in eruption frequency, degassing flux, magma composition, and crystal content that are mainly determined by the amount and composition of deep magma and volatile input in the system. We explore how Mayon volcano’s processes and working model can be related to other open-vent mafic and water-rich systems such as Etna, Stromboli, Villarrica, or Llaima. Finally, our understanding of open-vent, persistently active volcanoes is rooted in historical observations, but volcano behavior can evolve over longer time frames. We speculate that these volcanoes produce specific plagioclase textures that can be used to identify similar volcanic behavior in the geologic record.

DOI10.1007/s00445-021-01486-9