Insights into the vulnerability of vegetation to tephra fallouts from interpretable machine learning and big Earth observation data

Publication type

Journal Article

Research Area

Risk and Society

Geographic Area

Americas > Chile

Abstract

Although the generally high fertility of volcanic soils is often seen as an opportunity, short-term consequences of eruptions on natural and cultivated vegetation are likely to be negative. The empirical knowledge obtained from post-event impact assessments provides crucial insights into the range of parameters controlling impact and recovery of vegetation, but their limited coverage in time and space offers a limited sample of all possible eruptive and environmental conditions. Consequently, vegetation vulnerability remains largely unconstrained, thus impeding quantitative risk analyses. Here, we explore how cloud-based big Earth observation data, remote sensing and interpretable machine learning (ML) can provide a large-scale alternative to identify the nature of, and infer relationships between, drivers controlling vegetation impact and recovery. We present a methodology developed using Google Earth Engine to systematically revisit the impact of past eruptions and constrain critical hazard and vulnerability parameters. Its application to the impact associated with the tephra fallout from the 2011 eruption of Cordón Caulle volcano (Chile) reveals its ability to capture different impact states as a function of hazard and environmental parameters and highlights feedbacks and thresholds controlling impact and recovery of both natural and cultivated vegetation. We therefore conclude that big Earth observation (EO) data and machine learning complement existing impact datasets and open the way to a new type of dynamic and large-scale vulnerability models.

Publication Details

Journal

Natural Hazards and Earth System Sciences

Volume

22

Issue

9

Pagination

2829–2855

Date Published

2022

Subscribe to the EOS Newsletter

Stay in touch with the latest news, events, research, and publications from the Earth Observatory of Singapore.

Email is required

Email is wrong format

You Can Make a Difference

Partner with us to make an impact and create safer, more sustainable societies throughout Southeast Asia.
Make A Gift