Structural segmentation controlled the 2015 M-w 7.8 Gorkha earthquake rupture in Nepal

Publication type

Journal Article

Research Area


Research Team

Structural Geology


The ongoing collision of India with Asia is partly accommodated by slip on the Main Himalayan Thrust (MHT). The 25 April 2015, M-w 7.8 Gorkha earthquake is the most recent major event to rupture the MHT, which dips gently northward beneath central Nepal. Although the geology of the range has been studied for decades, fundamental aspects of its deep structure remain disputed. Here, we develop a structural cross section and a three-dimensional, geologically informed model of the MHT that are consistent with seismic observations from the Gorkha earthquake. A comparison of our model to a detailed slip inversion data set shows that the slip patch closely matches an oval-shaped, gently dipping fault surface bounded on all sides by steeper ramps. The Gorkha earthquake rupture seems to have been limited by the geometry of that fault segment. This is a significant step forward in understanding the deep geometry of the MHT and its effect on earthquake nucleation and propagation. Published models of fault locking do not correlate with the slip patch or our fault model in the vicinity of the earthquake, further suggesting that fault geometry was the primary control on this event. Our result emphasizes the importance of adequately constraining subsurface fault geometry in megathrusts in order to better assess the sizes and locations of future earthquakes.

Publication Details









Date Published



Subscribe to the EOS Newsletter

Stay in touch with the latest news, events, research, and publications from the Earth Observatory of Singapore.

Email is required

Email is wrong format

You Can Make a Difference

Partner with us to make an impact and create safer, more sustainable societies throughout Southeast Asia.
Make A Gift