A real-time tephra fallout rate model by a small-compact X-band Multi-Parameter radar

Publication type

Journal Article

Research Area



Real-time monitoring of volcanic tephra fallout rate is an important factor to predict ash plume dispersion and to mitigate risk to air traffic. Ground-based weather radar has been one of the fundamental instruments to detect the plume and derive eruptive source parameters, such as the tephra fallout rate. The current work presents the use of two small and compact X-band Multi-Parameter (X-MP) radars for a new tephra fallout rate model development and the technical aspects of the system in Sinabung and Merapi Volcanoes. The new model estimates the tephra fallout rate using two radar parameters: the specific differential phase shift parameter and the reflectivity intensity factor. Total cumulated mass estimated from the radar-based tephra fallout rate model from the radar is compared with the plume height model and an empirical radar-based model. A volcanic eruptive index (VEI)-2 of Sinabung generated a plume exceeding 15 km, resulting in a maximum tephra fallout rate of 0.58 kg m−2 h−1 and a total tephra mass of 51 × 106 kg. The VEI 1 of Sinabung caused a plume height of 2.5 km, resulting in a maximum tephra fallout rate of 0.3 kg m−2 h−1 and a total cumulated tephra of 9 × 106 kg. In the last case, a VEI 1 eruption of Mt. Merapi produces a 6 km plume, resulting in a maximum tephra fallout rate of 0.28 kg m−2 h−1 and a total cumulated tephra of 35 × 106 kg. The sector range height indicator scan-mode strategy in the VEI 2 eruption of Mt. Sinabung ran at six degrees azimuth angles capturing only a partial volume of the plume. Thus, the total mass was only 22% of the result from the empirical plume height model, even though the plume height was assumed to be equally the same with the maximum height scanned of radar at 7 km. In contrast, the volumetric scan by a plan position indicator strategy gave a total cumulated tephra mass, that matches better to the result of the empirical plume height model at 65–92%. Based on these results and the ability of the X-MP radar to capture the volcanic plume at the same reported onset time, we can confirm the importance of an X-MP radar for real-time tephra fallout monitoring during an eruption.


Real-time monitoring, Remote sensing, Tephra fallout rate model, Volcanoes of Indonesia, X-MP radar

Publication Details


Journal of Volcanology and Geothermal Research



Date Published



Article Number

Article number: 107040

Subscribe to the EOS Newsletter

Stay in touch with the latest news, events, research, and publications from the Earth Observatory of Singapore.

Email is required

Email is wrong format

You Can Make a Difference

Partner with us to make an impact and create safer, more sustainable societies throughout Southeast Asia.
Make A Gift