Olivine in picrites from continental flood basalt provinces classified using machine learning

Publication type

Journal Article

Research Area

Volcano

Research Team

Volcanic Petrology Group

Abstract

Picrites, dominantly composed of highly forsteritic olivine, can serve as important constraints on primary magma composition and eruption dynamic processes in global continental flood basalt (CFB) provinces. Picrites are commonly divided into high-Ti and low-Ti groups based on whole-rock TiO2 content or Ti/Y ratio. Here, we use an artificial neural network (ANN) to classify the individual olivine in picrites from global CFB provinces according to whether their parental magma is high-Ti or low-Ti to better understand the primary origin and magmatic processes. After training the ANN on 1000 olivine major element compositions data points, the network was able to differentiate chemical patterns for high-Ti and low-Ti olivine and classify olivine into correct types with an accuracy of >95%. Moreover, we find that two types of olivine mix in some single samples from Etendeka, Emeishan, and Karoo CFB provinces. Combining the results with chemical markers of source lithology, we suggest that the two types of olivine originate from two different sources and their olivine populations mixed during the ascent. This mixing then makes the spatial and temporal variation of picrites types in some CFB provinces unclear.

Authors

Publication Details

Journal

American Mineralogist

Volume

107

Issue

6

Pagination

1045-1052

Date Published

2022

Subscribe to the EOS Newsletter

Stay in touch with the latest news, events, research, and publications from the Earth Observatory of Singapore.

Email is required

Email is wrong format

You Can Make a Difference

Partner with us to make an impact and create safer, more sustainable societies throughout Southeast Asia.
Make A Gift